

Transportation Infrastructures towards Green Transition

Laura Moretti Department of Civil Building and Environmental Engineering Sapienza University of Rome

Life Cycle Analysis for concrete sleepers: methodology and implementation

Sustainable development

Development that meets the needs of the present generation without compromising the ability of future generations to meet their needs

World Commission on Environment and Development (the Brundtland report) report "Our Common Future" (1987)

Università degli Studi di Perugia Department of Civil and Environmental Engineering

Prof. Laura Moretti Sapienza University of Rome

Railway environmental concerns

Railway economic concerns

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

Railway social concerns

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

European regulation towards sustainability

COM (2003) 302 Communication of European Commission

Life cycle assessment provides the best framework for assessing the potential environmental impacts of products currently available. LCA is part of Integrated Product Policy strategy to reduce the environmental impacts from products throughout their life-cycle.

COM (2008) 400 Communication of European Commission Public procurement can make an important contribution to sustainable consumption and production.

European regulation towards sustainability

COM (2020) 98 Communication of European Commission

The construction sector requires vast amounts of abiotic resources and it accounts for about 50% of all extracted material and is responsible for over 35% of the EU's total waste generation.

Italian background

Decree of Ministry of Ecological Transition 23/06/2022

provides minimum environmental criteria (in Italian, Criteri ambientali minimi CAM) to design and build construction works **D. Lgs. 31/03/2023, art. 57**

confirms CAM are mandatory in all public construction projects

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

Italian background

CAM consists of mandatory or voluntary requirements such as:

- at least 5% by weight of concrete must contain secondary (i.e., recycled, recovered or by-product) raw materials,
- at least 70% of non-hazardous demolition waste must be prepared for re-use and recycling,
- at least 60% of permeable surfaces,
- designers with LCA experience,
- low-impacting earthmoving machines,
- low-distance raw materials.

Who needs an LCA? And why?

Product Development & Research & Development

Complying & Developing Products

Marketing & Sales

Supply Chain Management & Procurement

Evaluating Suppliers

Executive Level & Strategic Management Avoid Risks, Lead Strategically

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

What is LCA?

Life Cycle Assessment (LCA) is a standardized method to evaluate the environmental consequences of a product or activity across its entire life.

Possible Life Cycle Models: from-cradle-to-gate from-cradle-to-grave

How to do a LCA?

PCR (Product Category Rules - Regole di Categoria di Prodotto) provide category-specific guidance for estimating and reporting product life cycle environmental impacts when conducting the LCA.

Prof. Laura Moretti Sapienza University of Rome

Product category rules for building materials

EN 15804:2019+A2 defines the setup of Environmental Product Declarations (EPD) in the construction industry. It provides core PCR for Type III environmental declarations for any construction product and service. The assessment of social and economic performances at the product level is not covered by this standard.

SIST EN 15884:2012+A2:2019/AC:202

EUROPEAN STANDARD	EN
NORME EUROPÉENNE	15804:2012+A2:2019/AC
EUROPÄISCHE NORM	August 2021
ICS 91 010 99	

English version

Sustainability of construction works - Environmental product declarations -Core rules for the product category of construction products

Contribution des ouvrages de construction au développement durable - Déclarations environnementales sur les produits - Règles régissant les catégories de produits de construction Nachhaltigkeit von Bauwerken -Umweltproduktdeklarationen - Grundregeln für die Produktkategorie Bauprodukte

This corrigendum becomes effective on 18 August 2021 for incorporation in the official English version of the EN.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. The second se

Alle Rechte der Verwertung, gleich in weicher Form und in weichem Verfahren, sind weitweit den nationalen Mitgliedern von CEN vorbehalten.

Ref. No.:EN 15804:2012+A2:2019/AC:2021 E

Prof. Laura Moretti Sapienza University of Rome

ISO 14000 - Environmental Management Standards

ISO 14001	Certification of Environmental Management Systems
ISO 14010	Audit guidelines
ISO 14011	Audit methodology
ISO 14012	Qualification of auditors
ISO 14013-14015	Audit processes
ISO 14020-14025	Environmental labeling
ISO 14031-14032	Environmental performance evaluation
ISO 14040 / 14044	Life Cycle Assessment – General principles and practices
ISO 14050	Terms and Definitions
ISO 19011	Guide for management systems auditing

ISO 14001: Environmental Management Systems

ISO 14040 / 14044: Life Cycle Assessment

ISO 14020-14025: Environmental Labeling

ISO 14041 / 14043: LCA framework

Prof. Laura Moretti Sapienza University of Rome

Four Phases of a Life Cycle Analysis

Prof. Laura Moretti

Sapienza University of Rome

- 1. Definition of Goal and Scope
- 2. Inventory Analysis
- 3. Impact Assessment

4. Interpretation

Università degli Studi di Perugia Department of Civil and Environmental Engineering Prof. Laura Moretti Sapienza University of Rome

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome XIX International SIIV Summer School

Perugia 4th - 8th September 2023

	BUILDING ASSESSMENT INFORMATION														
	BUILDING LIFE CYCLE INFORMATION]	SUPPLEMENTARY INFORMATION BEYOND THE BUILDING LIFE CYCLE
A 1 - 3 A 4 - 5 B 1 - 7											C 1	L- 4		1	D
	PRODUCT CONSTRUCTION USE stage USE stage						END (OF LIFE age			Benefits and loads beyond the system boundary				
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4		
Raw material supply	Transport	Manufacturing	Transport	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	De-construction demolition	Transport	Waste processing	Disposal		Reuse- Recovery- Recycling- potential
			scenario	scenario	scenario	scenario scenario scenario scenario					scenario	scenario	scenario		
					B6 Operational energy use										
					scenario B7 scenario	Ope	erational	water use	2						

Università degli Studi di Perugia Department of Civil and Environmental Engineering

The simplest LCA model (i.e., «from cradle to gate») includes the modules A1 to A3 to have the product stage.

Further life cycle stages form the LCA "from cradle to gate with options". It adds C1 to C4 and D modules about end-of-life stage to those about product stage.

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

The life cycle of a product according to the system boundary leads to a "from cradle to grave" model. It includes the stages of production (modules A1 to A3), construction (modules A4-A5), use (modules B1-B7), and end-of-life (modules C1 to C4 and D).

Phase 2: Life Cycle Inventory (LCI)

The LCI is the data collection phase of a Life Cycle Assessment. Input and output flows are collected to model them in the next phase – the Life Cycle Impact Assessment (LCIA).

Phase 2: Life Cycle Inventory (LCI)

Raw materials and production phase (modules A1 to A3): energy carriers, utilities, process emissions, production waste, transport, raw materials, fuels ...

Use phase (modules B1 to B7): transport to stores, average use & maintenance

End-of-life phase (modules C1 to C4 and D): energy recovery, landfill, composting, or recycling

Phase 2: Life Cycle Inventory (LCI)

The data you need to make a product LCA 🔸 **INPUT DATA: RETRIEVE FROM:** FINANCE & SUSTAINABILITY DEPARTMENT. 1. COMPANY - ENERGY USAGE, EMISSIONS, AND WASTE. PURCHASING DEPARTMENT & GOOGLE MAPS. 2. PURCHASED AND USED RAW MATERIALS, **TRANSPORT DISTANCES IN KM. (TYPE +** QUANTITY) 3. PER PROCESS: PRODUCT DISTRIBUTION. PROCESS ENGINEER, PRODUCT OWNER. ENERGY USAGE, EMISSIONS. (TYPE + QUANTITY) 4. PRODUCTION COMPOSITION - BILL OF **PRODUCT OWNER & PURCHASING** DEPARTMENT. MATERIALS, UNIT(S) & WEIGHT PER PRODUCT, **PRODUCTION QUANTITIES.** AIM TO WORK WITH AS MUCH PRIMARY DATA POSSIBLE (AUTHENTIC DATA FROM SUPPLIERS).

🚫 Ecochain

Università degli Studi di Perugia Department of Civil and Environmental Engineering

Phase 3: Life Cycle Impact Assessment

Task 1: Selection of indicators and models

- Environmental impact categories
- Resource use
- Waste type
- Output flows
- (Other environmental information)
 Task 2: Classification
 Task 3: Impact Measurement

Life cycle assessment framework

Interpretation

Goal and scope

Inventory

Impact assessment

analysis

Direct applications: Product developmen and improvement

Strategic planning
 Public policy maki
 Marketing

Other

Phase 3: Life Cycle Impact Assessment

EN 15804:2019+A2 gives the characterization factors to compare the ability of different substances to cause the same environmental impact and assess it.

$$IC = \sum_{x} CF_{ic}(x) \cdot INV(x)$$

where IC is the Impact Category, INV(x), and CF_{ic}(x) is the characterization factor assigned to the substance x for IC calculation.

Prof. Laura Moretti Sapienza University of Rome Life cycle assessment framework

Interpretation

Goal and scope

Inventory

Impact

analysis

Direct applications: Product developmen and improvement

Strategic plannin
 Public policy mak
 Marketing

Other

Direct applications: -Product development and improvement - Strategic planning -Public policy making -Marketing -Other

Life cycle assessment framework

1

Interpretation

Goal and scope definition

Inventory

Impact

analysis

Phase 3: Life Cycle Impact Assessment

Impact category					
Climate change	kg CO2 eq				
Substances			CAS number	CF	Unit
Air	(unspecifie	Carbon dioxide	000124-38-9	1	kg
Air	(unspecifie	Carbon monoxide	000630-08-0	1,57	kg
Air	(unspecifi	Chloroform	000067-66-3	20	kg
Air	(unspecifi	Cis-perfluorodecalin	060433-11-6	8030	kg
Air	(unspecifi	Methane, fossil	000074-82-8	36,8	kg
Air	(unspecifi	Propane, 1-ethoxy-1,1,2,3,3,3-hexafluoro-	000380-34-7	28	kg
Air	(unspecifie	Propane, 1,1,1-trifluoro-, HFC-263fb	000421-07-8	92	kg
Air	(unspecifi	Propane, 1,1,1,2,2-pentafluoro-, HFC-245cb	001814-88-6	5300	kg
Air	(unspecifi	Propane, 1,1,1,2,2,3-hexafluoro-, HFC-236cb	000677-56-5	1440	kg
Air	(unspecifi	Propane, 1,1,1,2,2,3,3-heptafluoro-, HFC-227ca	002252-84-8	3080	kg
Air	(unspecifi	Propane, 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2,2-tetrafluo	003330-15-2	7370	kg
Air	(unspecifie	Propane, 1,1,1,2,3-pentafluoro-, HFC-245eb	000431-31-2	352	kg
Air	(unspecifi	Propane, 1,1,1,2,3,3-hexafluoro-, HFC-236ea	000431-63-0	1600	kg
Air	(unspecifi	Propane, perfluoro-	000076-19-7	9880	kg
Air	(unspecifi	Propane, perfluorocyclo-		10200	kg
Air	(unspecifi	Propanol, 2,2,3,3-tetrafluoro-1-	000076-37-9	16	kg

... and other 200 substances contribute to Climate change.

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome **XIX International SIIV Summer School**

Perugia 4th - 8th September 2023

Climate change - total, fossil, biogenic, and land use (kg CO₂-eq)

• Indicator of potential global warming due to emissions of greenhouse gases to the air

Ozone depletion (kg CFC-11-eq)

• Indicator of emissions to air that cause destruction of the stratospheric ozone layer

Acidification (kg mol H+)

• Indicator of the potential acidification of soils and water due to the release of gases such as nitrogen oxides and sulphur oxides

Università degli Studi di Perugia Department of Civil and Environmental Engineering

Photochemical ozone formation (kg NMVOC-eq)

• Indicator of emissions of gases that affect the creation of photochemical ozone in the lower atmosphere (smog) catalysed by sunlight

Depletion of abiotic resources - minerals and metals (kg Sb-eq)

• Indicator of the depletion of natural non-fossil resources

Depletion of abiotic resources - fossil fuels (MJ)

• Depletion of abiotic resources – fossil fuels

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

Human toxicity - cancer, non-cancer (CTUh)

Impact on humans of toxic substances emitted to the environment

Eutrophication - freshwater, marine, and terrestrial (kg PO₄-eq, kg N-eq, and mol N-eq)

 Indicator of the enrichment of the ecosystem with nitrogen or phosphorcontaining compounds

Eco-toxicity (freshwater) (CTUe)

• Impact on freshwater organisms of toxic substances emitted to the environment

Water use (m³ world eq. deprived)

• Indicator of the relative amount of water used, based on scarcity factors

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

Land use (dimensionless)

• Measure of the changes in soil quality (Biotic production, Erosion resistance, Mechanical filtration)

Ionizing Radiation

- Ionising radiation, human health (kBq U-235)
 - Damage to human health and ecosystems linked to the emissions of radionuclides

Particulate matter emissions (Disease incidence)

• Indicator of the potential incidence of disease due to particulate matter emissions

Università degli Studi di Perugia Department of Civil and Environmental Engineering

Resource use indicators

Impact category	Unit	Description
Primary renewable energy (materials)	MJ	Use of renewable primary energy resources as raw materials
Primary renewable energy (energy)	MJ	Use of renewable primary energy, excluding renewable primary energy resources used as raw materials
Primary renewable energy (total)	MJ	Sum of the two values above
Primary non-renewable energy (materials)	MJ	Use of non-renewable primary energy resources as raw materials
Primary non-renewable energy (energy)	MJ	Use of non-renewable primary energy, excluding renewable primary energy resources used as raw materials
Primary non-renewable energy (total)	MJ	Sum of the two values above
Use of freshwater	m ³	Freshwater use in absolute values
Use of renewable secondary fuels	MJ	Renewable fuel recovered from previous use or from waste which substitutes primary fuels
Use of non-renewable secondary fuels	MJ	Non-renewable fuel recovered from previous use or from waste which substitutes primary fuels

Waste indicators

Indicator	Unit	Description
Hazardous waste disposed	kg	Hazardous waste has a certain degree of toxicity that necessitates special treatment
Non-hazardous waste disposed	kg	Non-hazardous waste is non-toxic and similar to household waste. It consists of inert waste and ordinary household waste
Radioactive waste disposed	kg	Radioactive waste mainly originates from nuclear energy reactors

Prof. Laura Moretti Sapienza University of Rome

Output flows indicators

Indicator	Unit	Description
Components for re-use	kg	Material or components leaving the modelled system boundary which is destined for reuse
Materials for recycling	kg	Material leaving the modelled system boundary which is destined for recycling
Materials for energy recovery	kg	Material leaving the modelled system boundary which is destined for use in power stations using secondary fuels (minimum energy efficiency 60% or 65% for installations opened after 2008)
Energy production	MJ	Energy exported from waste incineration and landfill

Università degli Studi di Perugia Department of Civil and Environmental Engineering **Prof. Laura Moretti** Sapienza University of Rome

Phase 3: Life Cycle Impact Assessment

1 and scope definition 2 Inventory analysis 3 Impact assessment 3 Other

Life cycle assessment framework

Goal

The software SimaPro can do LCIA according to the method defined by EN 15804:2019+A2 or other methodologies recognized at international level using data from environmental databases as Ecoinvent 3.9.

Metod	0								
EPD A	ITEC2014 EN15804:2014_CementiRossi V1.00								
Prodo	to				Quantità fisica	Unità di misu	Progetto	Commento	
CLINK	ER_Piacenza				1	ton			
Libreri	a attuale				Suffisso				
Sostitu	izione libreria				Suffisso			_	
Cambi									
	Inventario per sottocompartimento								
	Esclude processi di infrastrutture								
	Esclude le emissioni di lungo termine								
Criteri	o di fermata Monte Carlo								
۲	Numero fisso di esecuzioni	1000							
0	Usa fattore di stop	0,005	Valore	Risultato caratterizzato (Globa	al warming (GWP 1	00))			
	Valore 'seed'	0							
Aiuto									Calcola
									$\overline{}$

Università degli Studi di Perugia Department of Civil and Environmental Engineering

Prof. Laura Moretti Sapienza University of Rome

Perugia 4th - 8th September 2023

Phase 4: Interpretation of LCA

Prof. Laura Moretti Sapienza University of Rome

Contact us

laura.moretti@uniroma1.it giulia.delserrone@uniroma1.it

+39 06 44585120 +39 06 44585119

Department of Civil, Constructional and Environmental Engineering, University of Rome La Sapienza, Via Eudossiana 18, 00184 Rome, Italy

Università degli Studi di Perugia Department of Civil and Environmental Engineering

